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A High-Accuracy Realization of the Yee Algorithm
Using Non-Standard Finite Differences

James B. ColeMember, IEEE

Abstract—New nonstandard second-order finite differences where s is a correction function chosen to minimize the
(FD'S_) are introduced, WhiCh when substituted into the Yee difference|(9, — d®®) f(x)| with respect to some set of basis
ﬁfogthgérézduc%em thteat'?nilgltlonr'derrag'nbyA7h f?C:f’J gfag,(nr 4s functions. In special cases it is even possible to construct exact
per wavelength)= g,uonle ach?e\llés th:a gsame zgc::uragy EIng theFD algorithms. While it_ Is impossible 0 construct an exaf:t
standard Yee algorithm does at\/h = 1140. In addition, greater ~S€cond-order FD algorithm to solve Maxwell's equations in
algorithmic stability allows a reduction in the number of two and three dimensions, it is possible to greatly improve the
iterations needed to solve a problem. accuracy of the Yee algorithm using the new second-order
NSFD’s which are introduced in this paper, following the

Index Terms—FDTD, nonstandard finite-difference, Maxwell’s .
methodology developed in [3].

equations, Yee algorithm.

Ill. STANDARD YEE ALGORITHM

I. INTRODUCTION

TRY To define this paper’'s approach, we first consider TM
HE ACCURACY of the second-order finite-difference : i
time-domain (FDTD) algorithm developed by Yee [1] tg-0/utions €x = £, =0, £, #0; H, # 0, H, #0, H, =0)

solve Maxwell's equations is low, unless a fine grid is use&? the two-dldmetr_lsmnal é_Z'D) i;)urcelﬁss MaxJ\[/_veII S equations
which imposes high computational costs. Higher order finitd? @ honconducting medium. Vaxwell's equations

difference (FD) approximations could be employed, but this u(x)8H(x,t) = =V x E(x,t) (3a)
not only increases computational costs, but also complicates .

the algorithm. In this paper, the nonstandard FD (NSFD) e(X)0ERX 1) =V x H(x,1) (3b)
concepts introduced by Mickens [2] are extended to construgign reduce to

high-accuracy version of the Yee algorithm based on NSFD’s.

At the expense of a modest increase in algorithmic complexity, (x)0eHa(x,t) = =0y E(x, 1) (4a)
it is possible to achieve a large increase in accuracy sub- (X)) Hy(x,t) = 0, E.(x,t) (4b)
ject to certain constraints, which can be wholly or partially ()0, B.(x,1) = 0, Hy(x, t) — 3, Ho(x, 1) (4c)

circumvented.
This paper’s algorithm has been implemented in paralighere x = (x,y) is a position vector, and(x) and p(x)

FORTRAN code and used to model spatially variant mexre local dielectric permittivity and magnetic permeability,

dia and irregular boundaries. By displaying one or momespectively.

fields per wave period, one obtains animated visualizationsReplacing the derivatives in (4) by standard FD's, one

of time-dependent electromagnetic scattering and propagatahtains a realization of the Yee algorithm

processes during the computation without the need to store

large data sets. d,H, <:1;7y - g’t> = E—i)%&y]@ <a:,y - g,t) (5a)

I

, ~ 1 At
Il. NSFD’s d.H, <a: - g;;t) = —%dez<a: - g;;t) (5b)
The standard second-order central FD approximation to the n(x)
first derivative is given by d,E. <$7y7t+ %) - %% d.H, <a:,y,t + %)
~ £
_ daf(x)

dof(2) = = 1) —d,H, <a:,y,t+ %)} (5¢)

where d, is a difference operator defined by, f(z)
flz+Azx/2) — f(x — Az /2). An NSFD [2] is defined by

- s(Ax)
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algorithm is obtained by

t+ 4t ort + At on the

d;* f(x) (2)

0018-9480/97$10.001 1997 IEEE

a[rﬁT by considering plane-wa
of the form o(x,t) = Ac'®*=«% in a uniform medium

For simplicity, one setsAx = Ay = h. An explicit FDTD

solving for quantities which contain
left.

IV. SOLUTION ERROR

stability of algorithm (5) are analyzed
wave solutions for a field component
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Fig. 1. Solution error for (a) the standard Yee algorithm, and (b) its
high-accuracy version for a plane wave propagating at af\gleith respect @) (b)

to thez-axis. Spatial grid is\/h = 8, with T/AT = 12, whereA andT  gjg 2 Graphical depiction of two independent FD approximations to the

are the wavelength and wave period, respectively. Laplacian in two dimensions. Each figure, centeredaaty, represents a
summation. Grid spacing iB/2. Vertices represent the value of a function
at the corresponding geometrical position, and the numbers indicate its

(e(x), u(x) = constant), wherk = (k,, k,) = k(cosf,sinf). summation weight.

Maxwell's equations then reduce to the wave equation with

respect to each field component

is an excellent approximation for all values 6f D%, is

(O — v’ V2)P(x,1) =0 (6) constructed by superposing two standard FD Laplacians
while (5) reduces to the FD approximation of (6) sk(h)’Dfy) = 70h°Dfy + (1 — 70)h* DYy (13)
(dsr — v?D?)p(x, 1) (7) whereD%l) = D? and D%Q) are given by

whered,, = d.d;, D* = d,, + d,, is a FD Laplacian ;2?2 Fflzy) = [fx+hy) + flz = hy) + flz,y+ h)
- X : L
operatory = 1/, /21 is the wave velocity, and, the angular

frequency, andk, the wave number, satisfy the dispersion J;f(x’y_ )l = 4f(z,y) (143)
relation w/k = wv. h*Dlyy f(z,y) = sU@+hy+h)+ fz+hy=h)
Insertin t) into (7), one defines the solution errgr
g el ) e (0 0 =y B+ S by - D]
- - 2f(z.y). (14b)
(dtt -V D(1))¢0(X7 t) = 477((*‘)7 k)T/JO(Xv t) (8)
. Dé) and D%Q) are graphically depicted in Fig. 2. The super-
and obtains position parametery, is given by
1 .
n(w, k) = AR sin”(wAt/2) Yo(k)

cos k; cos ky—cos k

1 5 .9 22 —
+ ﬁv (SlIl (ka;h/2) —+ sin (kyh/Q)) (9) 1—COS/€$ COSky—COSkx—COSky (e, )= h(c05 6 5in 60)
A plot of 1 as a function of the propagation directiéat fixed (15)

= is sh in Fig. 1(a). Notice the | irectional
k _ |k|) is shown in Fig. 1(a). Notice the large dlrectlonaWhere 6o = 0.18203r.
anisotropy. If NSFD derivati torsl’, and d’, could be det

Following [2], one might try to eliminate the solution error . erivalive operatorsi, andd, could be deter-

2
by replacing the standard FD’s in (5) with NSFD’s defined bgnn_ed, such thaD(O) - d,d;, +d,dy, one could construct
high-accuracy version of the Yee algorithm. Unfortunately

4 = - (1A§) de (10) ©ne cannot realize this decomposition, but one can write
| ’ si(h)’Dfy = AL +dPd (16)
where the function
] where
sa(AE) = 2sin(aAé/2)/a (11) 5 5 5
A = apdM + (1 - ag)d? (17)

is chosen such that®®e'® = Jee' exactly. Unfortunately,
the definition of the spatial NSFD’s is directionally anisotropici¢ = . ), anday is a parameter such that (16) is fulfilled. For
which means that one can construct a zero-error FD algorithystational convenience, one writels = &él)' to distinguish

only with respect to plane waves propagating in the particular, o ~(3) .
directionk = (k,, k), for which thed® are defined. Such t'from a new spatial difference operatdg , defined by

an algorithm is of little practical value. 2d D f(x,y)
- —h/2,y+h) - —h/2,y—h 18a
In [3] a nearly isotropic FD Laplacia]i)%o) was introduced, 2d @ /@ [2yth) = f@ /2y=h (182)
for which v f@y)
9 9 :f($+h7y+h/2)+f($_h7y+h/2)
Dig)to(x, 1) = V9ho(x, 1) (12) — fle+hy—h/2) = fle—hy—h/2). (18b)

V. NONSTANDARD FD SPATIAL-DERIVATIVE OPERATORS
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-2 VIl. ERROR AND STABILITY
The solution error of algorithm (21) with respect 10,

- T [see Fig. 1(b)] is less than 10 of (5). At \/h = 8, (21)
LM , yields the same accuracy as the standard Yee algorithm does

~:§~<z> )~ -2 at A/h = 1140. Since bothag and « are functions ofk,

2dd] = 2d;d, solution error is minimized only at the angular frequengy

. () . S
Fig. 3. Graphical depiction of two independent FD approximatigpsin &t Wh'c_h thed,” are defined. For nonmonochromatic s_lgnals,
two dimensions and their composition. Figures are centered, af) (and the one might, therefore, expect that accuracy can be high only
grid spacing ish/2. Function values at the vertices are summed accordingear this frequency. It turns out, however, that while solution
to the indicated weight. error does increase away fram it is still smaller than that of
algorithm (5), and is still highly isotropic. The tradeoffs needed
The operatod!? andd{”d(? are depicted in Fig. 3. Using to handle multiple frequencies are discussed in [3]. It should

this result, it is easily shown that be noted that the solution error of the standard algorithm is
also both frequency-dependent and anisotropic.
(1) (2 Due to the asymmetric decomposition &%, in (16),
3 aal? = 21’D%, - K*DE,. (o)  bu ymmetri position ¥, in (16)

high-accuracy solutions for botE and H are not obtained
within the same computational run. Because iHefields
Inserting (17) into (16) and solving fao, one findsay = &€ computed fir_st, they cor_wtain an anisotropic scale_ error.
(1 + ~0)/2. To obtain theH-fleId_s with high accuracy, one could elther
rgarrange the algorithm to compuld last, or compute it
from the high-accuracyE-fields in an extra computational

§=z,y

New NSFD approximations to the space and time deriv.
tives are now defined by

step.
© 1 =0 Although the accuracy of the FD approximations are im-
d;’ = mdg (20a) proved with respect to the periodic electromagnetic-field com-
1. ponents, such quantities are not necessarily approximated as
d§°> = @ d;. (20b) 9,2(x) any more accurately with NSFD operators.

Stability analysis [4] for the Yee algorithm is carried out
assuming a uniform sourceless medium. The stability criteria
are, thus, the same as for the FDTD algorithm used to solve the
wave equation [3], [7]. For algorithm (5), the stability criteria
can be expressed in the form

Notice that in (20a)s,(h) does not depend of

VI. HIGH-ACCURACY REALIZATION OF THE YEE ALGORITHM

A high-accuracy version of the Yee algorithm can now be AR < @ ~ 0.70 (22)
constructed. First, replace all the time derivatives in (4) by T/At — 2 Al

d§°>, and then replace the spatial derivatives in (4a) and (4\5%

ereT is the wave period, while for (21) one has [3
by thedéo). Finally, replace the spatial derivatives in (4c) by ! wave period, wh (21) 3]

—T/At_wrmsm 1 .80. (23)
d.H, <x,y - ﬁ,t> Thus, for a fixed value of/h, (21) requires fewer iterations
2 because the rati@/At can be smaller. Although, rigorously
_ -1 u(x)&(O)E. o,y — h ¢ (21a) speaking, (22) and (23) are valid only for uniform, noncon-
p(x) A 2’ ducting, sourceless media, they seem to hold for the general
~ h case too [4].
dtHy <.’L’ bt 5, y,t)
1 i0E h 21b VIIl. EXTENSION TO THREE DIMENSIONS
= z -5t i i i
p(x) u(x)ds <$ 9 Y ) (216) In three dimensions there are three basic second-order FD
. At Laplacians, which are graphically defined in Fig. 4. As shown
d.E; <a:,y,t+ 7) in [3], one can combine them to construct an isotropic FD
1 B At Laplacian of the form
= —u(x)|d. H a:,y,t+—)
E(X) ( ) |: y< 2 D%o) = 771D%1) + 772D%2) + 773D%3) (24)
~ At
—dyH, <$,y,t + ?ﬂ (21c) where n1 + m + ns = 1. Setting (ky, k. k.) =

k(sin 6 cos ¢, sin 6 sin ¢, cos §), whereé and ¢ are spherical
coordinates, one defines

whereu(x) = sw(At)/sk(x)(h), and k(x) = wy/e(x)p(x).

If one setsu(x) = At/h andd!” = dg, the standard Yee Dy (k,0,¢) = cosky + cosky +cosk. —3  (252)

algorithm is recovered. Dy (k,0,¢) = cos kg cosk,cosk. — 1 (25b)
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g ) Fig. 5. Graphical depiction of three different FD approximationsg)toin
three dimensions. Figures are centered:ay( z) and the grid spacing is/2.
¢ Function values at the vertices are summed according to the indicated weight.
. 1
. o . o az = i (31b)
Fig. 4. Graphical depiction of three independent FD approximations to the 3
Laplacian in three dimensions. Figures are centered,aj,(z). Grid spacing . 1 1 31
is /2. Function values at the vertices are summed according to the indicated 3 = 3772 + 5773' (31c)

weight.

Ds(k,6,¢) = %(COS kz cosky + cosk, cosk,
+cosky, cosk. — 3)

(25¢)

Do = vD1+(1—0)D2, D13 = (270 —1)D1+2(1—0)Ds,

NSFD’s are now substituted into Maxwell's equations to
obtain a high-accuracy Yee algorithm. Following Section VI,
the time derivatives in (3) are replaced Id)}o), the spatial
derivatives in (3a) by the”, and those in (3b) bﬁlf/sk(h)
to obtain

and &tHx<$7y_gvz gvt>
Dis(k,m/4,¢o) — (cosk = 1)
k) = 26 - ~ h h
)= Byl /4, do) — Dty ) = /jz;’;) [dé”Ez <a:y 50 2,t)
where ¢y = 0.118 117. It can then be shown [3] that N 3 3
- dOE, <a:y — 57 5,% (32a)
m = no(l =)+ (2y — 1) (27a) h h
e = 770(]- - ’70)7 (27b) dtHy <37 - §,y,z - §7t>
n3=1—(m +n2). (27c) _
= ux) [EIZO)EJ;<$— ﬁ,y,z— ﬁ,t)
DY, is now decomposed in the form ) 2 2
~ ~ ~ ~ ~ ~ - &;O)EZ <$ - Evyvz - ﬁ7t>:| (32b)
st(h)?DYyy = dPd +dPdP +dHd (28) 2 2
1 T
where ATV T
3(0 (1 (2 (3 — ~
d¥ = 2 d® + d® + azd? (29) _ /ZS) [d;(J)Ey <x _ gy _ g%t)
dY = d;, andd® andd®?® are new difference operators, ) A A
and theo satisfy the constraint + az + a3 = 1. In Fig. 5 —d, B, <“7 ¥~ §vzvt>} (32c)
one graphically definesit”, d?, and d®. Rotating the h At
coordinate axes relative to the figures, one can easily infer the diE, <$ — 524t + —)
L - . . 2 2
definitions of the other spatial difference operators. Following
the graphical computation of Fig. 3, one can easily show that — ugxg [&sz <3,j _h v,z b+ ﬁ)
e(x 277 2
JD 32 _ p2(a2 2 .
5:% de d;"=h (3D(2) - 2D(3)) (30a) — d.H, <a: _ gw’ 2t + %)} (32d)
F(L 3B _ p2 2 2 ~
> di’d = h* (2D - DY) (30D) d.E, <a:y ks ﬁ)
g=ay,z 2 2
. . . . _u(x) d.H ﬁ
Inserting (29) into (28) and using (30) one finds =) [ T,y Zt+ 5
1 1 ~ h At
(a7 :7714-57724-5773 (31a) - dasz<$7y_ §,Z,t+ ?>:| (32¢)
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EltEZ<a:,y,z — ﬁ,t—i— ﬁ)

2 2
w(x) [~ h At -
= I OUH y Yo T G 5 s ——
s<x>[d <” 2t 2)
o e S 2
Again, the standard Yee algorithm can be recovered by setting : }_‘-,_S:_j

u(x) = At/h andd” = d..

The solution error follows from the discussion in [3],
[4]. Fig. 1 depicts the solution error for the standard and
nonstandard Yee algorithms in three dimensions with respect
to 4. It is of similar magnitude with respect tp.

Following [3], [4], the stability criterion for the standard
three-dimensional (3-D) Yee algorithm can be expressed in
the form

[l
|

i
L

Mh o V3
—— < — ~05 33
T/at =3 0.57 (33a)

while for the high-accuracy version (32), one has

M 5 arcsin < Eé) ~ 0.73. (33b)

(ARt

Fig. 6. 2-D Mie scattering. Gaussian TM wavéz.( normal-to—paper)
scatters off two rotated ellipse€. amplitude is depicted. Spatial grid is

. . . . /h = 8, while the time gridding iST'/AT = 12, whereX and T are the
Since the value on the left in (33b) is larger than in (33 avelength and wave period, respectively. Ellipse major and minor axes are

fewer time steps are required for the NSFD Yee algorithoa and 4, respectively.
than for the ordinary one.

Again, as in the 2-D case, high accuracy is obtained onfyhich are some 10000 times more accurate than the standard
for the E-fields. To obtain theH-fields with equal accuracy, yee algorithm. AtA/h = 8, the same accuracy is achieved
one could either rearrange the algorithm to compHidast, as the standard Yee algorithm achieves\ab = 1140. The

< —
T/At = 7 23 2

or compute it from theE-fields. highest accuracy is achieved at one fixed frequency, but it is
possible to handle moderate bandwidths with some tradeoffs.
IX. PARALLEL PROGRAM The computational load per grid point is greater, but it is more

REALIZATIONS AND VISUALIZATIONS than offset by the low\/A ratio which can be used, as well

By extending the author's previous work [5], [6], both®S by a decrease in the number of iterations needed. High

the standard and high-accuracy Yee algorithms in paralfdicuracy is achieved by using all 27 grid points in & 3 x

FORTRAN-90 code have been implemented. The higr?,»_regmn. This compact computathnal molecule is well suited

accuracy version can be realized by simple modifications & Parallel and distributed computing platforms.

the basic Yee code. The field components, medium parameters,

andwu(x) andag(x) are represented as 2-D or 3-D arrays. The ACKNOWLEDGMENT
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This obviates the need to store large quantities of data,
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