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A High-Accuracy Realization of the Yee Algorithm
Using Non-Standard Finite Differences

James B. Cole,Member, IEEE

Abstract—New nonstandard second-order finite differences
(FD’s) are introduced, which when substituted into the Yee
algorithm, reduce the solution error by a factor of 10�4

on a coarse computational grid. Using �=h�=h�=h (grid spacings
per wavelength)= 8, one achieves the same accuracy as the
standard Yee algorithm does at�=h�=h�=h = 1140. In addition, greater
algorithmic stability allows a reduction in the number of
iterations needed to solve a problem.

Index Terms—FDTD, nonstandard finite-difference, Maxwell’s
equations, Yee algorithm.

I. INTRODUCTION

T HE ACCURACY of the second-order finite-difference
time-domain (FDTD) algorithm developed by Yee [1] to

solve Maxwell’s equations is low, unless a fine grid is used,
which imposes high computational costs. Higher order finite-
difference (FD) approximations could be employed, but this
not only increases computational costs, but also complicates
the algorithm. In this paper, the nonstandard FD (NSFD)
concepts introduced by Mickens [2] are extended to construct a
high-accuracy version of the Yee algorithm based on NSFD’s.
At the expense of a modest increase in algorithmic complexity,
it is possible to achieve a large increase in accuracy sub-
ject to certain constraints, which can be wholly or partially
circumvented.

This paper’s algorithm has been implemented in parallel
FORTRAN code and used to model spatially variant me-
dia and irregular boundaries. By displaying one or more
fields per wave period, one obtains animated visualizations
of time-dependent electromagnetic scattering and propagation
processes during the computation without the need to store
large data sets.

II. NSFD’S

The standard second-order central FD approximation to the
first derivative is given by

(1)

where is a difference operator defined by
. An NSFD [2] is defined by

(2)
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where is a correction function chosen to minimize the
difference with respect to some set of basis
functions. In special cases it is even possible to construct exact
FD algorithms. While it is impossible to construct an exact
second-order FD algorithm to solve Maxwell’s equations in
two and three dimensions, it is possible to greatly improve the
accuracy of the Yee algorithm using the new second-order
NSFD’s which are introduced in this paper, following the
methodology developed in [3].

III. STANDARD YEE ALGORITHM

To define this paper’s approach, we first consider TM
solutions ( , ; , , )
to the two-dimensional (2-D) sourceless Maxwell’s equations
in a nonconducting medium. Maxwell’s equations

(3a)

(3b)

then reduce to

(4a)

(4b)

(4c)

where is a position vector, and and
are local dielectric permittivity and magnetic permeability,
respectively.

Replacing the derivatives in (4) by standard FD’s, one
obtains a realization of the Yee algorithm

(5a)

(5b)

(5c)

For simplicity, one sets . An explicit FDTD
algorithm is obtained by solving for quantities which contain

or on the left.

IV. SOLUTION ERROR

The solution error and stability of algorithm (5) are analyzed
[4] by considering plane-wave solutions for a field component
of the form in a uniform medium
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(a) (b)

Fig. 1. Solution error for (a) the standard Yee algorithm, and (b) its
high-accuracy version for a plane wave propagating at angle�, with respect
to thex-axis. Spatial grid is�=h = 8, with T=�T = 12, where� andT
are the wavelength and wave period, respectively.

( constant), where .
Maxwell’s equations then reduce to the wave equation with
respect to each field component

(6)

while (5) reduces to the FD approximation of (6)

(7)

where is a FD Laplacian
operator, is the wave velocity, and , the angular
frequency, and , the wave number, satisfy the dispersion
relation .

Inserting into (7), one defines the solution error
by

(8)

and obtains

(9)

A plot of as a function of the propagation direction(at fixed
) is shown in Fig. 1(a). Notice the large directional

anisotropy.
Following [2], one might try to eliminate the solution error

by replacing the standard FD’s in (5) with NSFD’s defined by

(10)

where the function

(11)

is chosen such that exactly. Unfortunately,
the definition of the spatial NSFD’s is directionally anisotropic,
which means that one can construct a zero-error FD algorithm
only with respect to plane waves propagating in the particular
direction , for which the are defined. Such
an algorithm is of little practical value.

V. NONSTANDARD FD SPATIAL-DERIVATIVE OPERATORS

In [3] a nearly isotropic FD Laplacian was introduced,
for which

(12)

(a) (b)

Fig. 2. Graphical depiction of two independent FD approximations to the
Laplacian in two dimensions. Each figure, centered at (x, y), represents a
summation. Grid spacing ish=2. Vertices represent the value of a function
at the corresponding geometrical position, and the numbers indicate its
summation weight.

is an excellent approximation for all values of. is
constructed by superposing two standard FD Laplacians

(13)

where and are given by

(14a)

(14b)

and are graphically depicted in Fig. 2. The super-
position parameter is given by

(15)

where .
If NSFD derivative operators and could be deter-

mined, such that , one could construct
a high-accuracy version of the Yee algorithm. Unfortunately
one cannot realize this decomposition, but one can write

(16)

where

(17)

, and is a parameter such that (16) is fulfilled. For
notational convenience, one writes , to distinguish

it from a new spatial difference operator , defined by

(18a)

(18b)
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Fig. 3. Graphical depiction of two independent FD approximations@x in
two dimensions and their composition. Figures are centered at (x, y) and the
grid spacing ish=2. Function values at the vertices are summed according
to the indicated weight.

The operator and are depicted in Fig. 3. Using
this result, it is easily shown that

(19)

Inserting (17) into (16) and solving for , one finds
.

New NSFD approximations to the space and time deriva-
tives are now defined by

(20a)

(20b)

Notice that in (20a), does not depend on.

VI. HIGH-ACCURACY REALIZATION OF THE YEE ALGORITHM

A high-accuracy version of the Yee algorithm can now be
constructed. First, replace all the time derivatives in (4) by

, and then replace the spatial derivatives in (4a) and (4b)
by the . Finally, replace the spatial derivatives in (4c) by

. This yields

(21a)

(21b)

(21c)

where , and .

If one sets and , the standard Yee
algorithm is recovered.

VII. ERROR AND STABILITY

The solution error of algorithm (21) with respect to
[see Fig. 1(b)] is less than 10 of (5). At , (21)
yields the same accuracy as the standard Yee algorithm does
at . Since both and are functions of ,
solution error is minimized only at the angular frequency,
at which the are defined. For nonmonochromatic signals,
one might, therefore, expect that accuracy can be high only
near this frequency. It turns out, however, that while solution
error does increase away from, it is still smaller than that of
algorithm (5), and is still highly isotropic. The tradeoffs needed
to handle multiple frequencies are discussed in [3]. It should
be noted that the solution error of the standard algorithm is
also both frequency-dependent and anisotropic.

Due to the asymmetric decomposition of in (16),
high-accuracy solutions for both and are not obtained
within the same computational run. Because the-fields
are computed first, they contain an anisotropic scale error.
To obtain the -fields with high accuracy, one could either
rearrange the algorithm to compute last, or compute it
from the high-accuracy -fields in an extra computational
step.

Although the accuracy of the FD approximations are im-
proved with respect to the periodic electromagnetic-field com-
ponents, such quantities are not necessarily approximated as

any more accurately with NSFD operators.
Stability analysis [4] for the Yee algorithm is carried out

assuming a uniform sourceless medium. The stability criteria
are, thus, the same as for the FDTD algorithm used to solve the
wave equation [3], [7]. For algorithm (5), the stability criteria
can be expressed in the form

(22)

where is the wave period, while for (21) one has [3]

(23)

Thus, for a fixed value of , (21) requires fewer iterations
because the ratio can be smaller. Although, rigorously
speaking, (22) and (23) are valid only for uniform, noncon-
ducting, sourceless media, they seem to hold for the general
case too [4].

VIII. E XTENSION TO THREE DIMENSIONS

In three dimensions there are three basic second-order FD
Laplacians, which are graphically defined in Fig. 4. As shown
in [3], one can combine them to construct an isotropic FD
Laplacian of the form

(24)

where . Setting
, where and are spherical

coordinates, one defines

(25a)

(25b)
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(a) (b)

Fig. 4. Graphical depiction of three independent FD approximations to the
Laplacian in three dimensions. Figures are centered at (x, y, z). Grid spacing
is h=2. Function values at the vertices are summed according to the indicated
weight.

(25c)

, ,
and

(26)

where . It can then be shown [3] that

(27a)

(27b)

(27c)

is now decomposed in the form

(28)

where

(29)

, and and are new difference operators,
and the satisfy the constraint . In Fig. 5
one graphically defines , , and . Rotating the
coordinate axes relative to the figures, one can easily infer the
definitions of the other spatial difference operators. Following
the graphical computation of Fig. 3, one can easily show that

(30a)

(30b)

Inserting (29) into (28) and using (30) one finds

(31a)

Fig. 5. Graphical depiction of three different FD approximations to@x in
three dimensions. Figures are centered at (x, y, z) and the grid spacing ish=2.
Function values at the vertices are summed according to the indicated weight.

(31b)

(31c)

NSFD’s are now substituted into Maxwell’s equations to
obtain a high-accuracy Yee algorithm. Following Section VI,
the time derivatives in (3) are replaced by , the spatial
derivatives in (3a) by the , and those in (3b) by
to obtain

(32a)

(32b)

(32c)

(32d)

(32e)
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(32f)

Again, the standard Yee algorithm can be recovered by setting
and .

The solution error follows from the discussion in [3],
[4]. Fig. 1 depicts the solution error for the standard and
nonstandard Yee algorithms in three dimensions with respect
to . It is of similar magnitude with respect to.

Following [3], [4], the stability criterion for the standard
three-dimensional (3-D) Yee algorithm can be expressed in
the form

(33a)

while for the high-accuracy version (32), one has

(33b)

Since the value on the left in (33b) is larger than in (33a),
fewer time steps are required for the NSFD Yee algorithm
than for the ordinary one.

Again, as in the 2-D case, high accuracy is obtained only
for the -fields. To obtain the -fields with equal accuracy,
one could either rearrange the algorithm to computelast,
or compute it from the -fields.

IX. PARALLEL PROGRAM

REALIZATIONS AND VISUALIZATIONS

By extending the author’s previous work [5], [6], both
the standard and high-accuracy Yee algorithms in parallel
FORTRAN-90 code have been implemented. The high-
accuracy version can be realized by simple modifications of
the basic Yee code. The field components, medium parameters,
and and are represented as 2-D or 3-D arrays. The

- and -arrays are updated at every time step.
Current sources and conducting media can be accommodated
by appropriate modifications [4] of (21) or (32). Time varying,
moving media, and moving sources can be incorporated by
updating the appropriate arrays at every time step. Our core
program is about one page of FORTRAN-90 code.

By displaying one or more wave fields per wave period,
movie-like visualizations of time-dependent electromagnetic
wave propagation and scattering processes are created, which
can be viewed on line while the calculation is actually running.
This obviates the need to store large quantities of data,
and gives a heuristic feel for the calculation. An example
application to Mie scattering off of a dielectric, which cannot
be performed analytically is shown in Fig. 6.

X. SUMMARY AND CONCLUSION

New NSFD’s have been introduced to construct a high-
accuracy FDTD algorithm to solve Maxwell’s equations,

Fig. 6. 2-D Mie scattering. Gaussian TM wave (Ez normal–to–paper)
scatters off two rotated ellipses.Ez amplitude is depicted. Spatial grid is
�=h = 8, while the time gridding isT=�T = 12, where� andT are the
wavelength and wave period, respectively. Ellipse major and minor axes are
2� and 4�, respectively.

which are some 10 000 times more accurate than the standard
Yee algorithm. At , the same accuracy is achieved
as the standard Yee algorithm achieves at . The
highest accuracy is achieved at one fixed frequency, but it is
possible to handle moderate bandwidths with some tradeoffs.
The computational load per grid point is greater, but it is more
than offset by the low ratio which can be used, as well
as by a decrease in the number of iterations needed. High
accuracy is achieved by using all 27 grid points in a 33
3 region. This compact computational molecule is well suited
to parallel and distributed computing platforms.
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